# OF THE AMERICAN CHEMICAL SOCIETY 

Registered in U. S. Patent Office. (C) Copyright, 1960, by the American Chemical Society

Volume 91, Number 21
October 8, 1969

# Physical and Inorganic Chemistry 

# On the Calculation of $10 D q$ 

Peter O'Donnell Offenhartz<br>Contribution from the Department of Chemistry, Amherst College, Amherst, Massachusetts 01002. Received April 17, 1969


#### Abstract

Previous theoretical frameworks for the calculation of 10 Dq are investigated, and two new such frameworks are proposed. One is based on the ordinary Roothaan formalism for low-spin $\mathrm{d}^{6}$ octahedral complexes, which have a closed $t_{25}$ shell, while the other is based on the average-of-configuration Roothaan open-shell formalism. Both methods are applied to the calculation of 10 Dq for $\mathrm{CrF}_{6}{ }^{3-}, \mathrm{FeF}_{8}{ }^{8}$ - , and $\mathrm{NiF}_{6}{ }^{4-}$, and reasonable agreement with experiment is found. The Roothaan open-shell formalism is compared with semiempirical methods of calculation, and some close connections are established.


The quantity $10 D q$, or $\Delta$, occurring in ligand-field theory, is difficult to calculate. Even the simplest transition metal complexes, such as $\mathrm{MF}_{6}{ }^{3-}$, contain 79 or more electrons, and clearly fairly gross approximations or simplifications of some sort are necessary to the calculation. However, the present paper is not so much concerned with the nature of these approximations as with the definition of $10 D q$ itself, and the way in which the precise theoretical definition can affect the calculated value. There is in the literature a partially resolved controversy between two different ways of calculating $10 D q$, that of Sugano and Shulman ${ }^{1}$ (SS), whose work on $\mathrm{NiF}_{8}{ }^{4-}$ produced results in excellent agreement with experiment, and that of Watson and Freeman ${ }^{2}$ (WF), whose calculations, although presumably more theoretically rigorous, produced results in rather poor agreement with experiment. The phrase "partially resolved" is used because Sugano himself, in conjunction with Tanabe, ${ }^{3}$ has taken the WF point of view, as has the present author in a previous publication. ${ }^{4}$

The definition of $10 D q$ is really a simple matter, at least in certain systems. In compounds containing one or nine d electrons, it is the difference in energy between the ground state $\left({ }^{2} \mathrm{~T}_{2 \mathrm{~g}}\right.$ or $\left.{ }^{2} \mathrm{E}_{\mathrm{g}}\right)$ and the first excited state ( ${ }^{2} \mathrm{E}_{\mathrm{g}}$ or ${ }^{2} \mathrm{~T}_{2 \mathrm{~g}}$ ) of the octahedrally symmetric molecule.
(1) S. Sugano and R. G. Shulman, Phys. Rev., 130, 517 (1963).
(2) R, E. Watson and A. J. Freeman, ibid., 134, 1526 (1964).
(3) S. Sugano and Y. Tanabe, J. Phys. Soc. Japan, 20, 1155 (1965).
(4) P. O'D. Offenhartz, J. Chem. Phys., 47, 2951 (1967).

Similarly, in systems with two, three, or eight d electrons, $10 D q$ is very close to the energy of the lowest $\mathrm{d}-\mathrm{d}$ excitation, and this is true for high-spin $\mathrm{d}^{4}, \mathrm{~d}^{6}$, and $\mathrm{d}^{7}$ systems as well. Exact definitions are not possible in the other cases ( $d^{5}$, and low-spin $d^{4}, d^{6}$, and $d^{7}$ ), but there is no real difficulty in obtaining an experimental value of $10 D q$ which gives the best fit to the observed spectrum. The problem arises in deciding which quantity to compare with calculations.

Any definition of $10 D q$ based on state energy differences cannot cover all possible complexes, and thus lacks coherence. A more useful definition can be given in the framework of the orbital picture, which is of course not rigorous, however. It is usual to say that $10 D q$ is the difference in orbital energy between the $\mathrm{e}_{\mathrm{g}}$ and $t_{2 g}$ molecular orbitals which are largely localized on the transition metal. However, this definition is not true unless, as we shall see, the orbital energy is defined in a very special way. The problem of orbital energy definition is best illustrated if we consider the crude crystal-field model, in which the relevant quantities are $\mathrm{e}_{\mathrm{g}}$ and $\mathrm{t}_{2 \mathrm{~g}}$ atomic d orbitals.

Let us define the energy of the $i$ th orbital as

$$
\begin{equation*}
\epsilon_{i}=H_{i}+\sum_{j}\left(J_{i j}^{\prime}-K_{i j}^{\prime}\right) \tag{1}
\end{equation*}
$$

where the sum over $j$ extends over all singly occupied spin orbitals, and where $K_{i j}{ }^{\prime}$ is zero unless orbitals $i$ and $j$ contain electrons of the same spin. $H_{i}$ is the usual
one-electron operator consisting of kinetic and nuclear potential energies, while $J_{i j}{ }^{\prime}$ and $K_{i j}{ }^{\prime}$ are respectively Coulomb and exchange integrals over the orbitals. This equation can give rise to up to ten different values of $\epsilon_{i}$, one for each possible spin orbital in the $d$ shell. For example, consider the $\mathrm{d}^{8}$ configuration of $\mathrm{Ni}^{2+}$. It is not difficult to show that

$$
\begin{align*}
& \epsilon_{\mathrm{t}}^{\mathrm{f}+}=U+7 A-14 B+5 C=-1.414 \\
& \epsilon_{\mathrm{t}^{\mathrm{f}}}^{\mathrm{f}}=U+7 A-10 B+7 C=-1.275 \\
& \epsilon_{\mathrm{e}^{\mathrm{f}+}}=U+7 A-14 B+3 C=-1.503  \tag{2}\\
& \epsilon_{\mathrm{e}}^{\mathrm{e}-}=U+8 A-6 B+7 C=-0.381
\end{align*}
$$

as first noted by Watson and Freeman. ${ }^{2}$ Here subscripts $t$ and $e$ refer to $t_{2 g}$ and $e_{g}$ orbitals, while superscripts $f$ and e denote whether the orbital in question is full or empty. Similarly, plus and minus superscripts indicate spin. Calculations of $\epsilon$ carried out in this way are valid only within the context of a particular state and component; for $\mathrm{Ni}^{2+}$ this was taken as the $M_{\mathrm{S}}=3 / 2$ component of the ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ ground state of the $\mathrm{t}_{2 \mathrm{~g}}{ }^{6} e_{\mathrm{g}}{ }^{2}$ configuration. Different orbital energies would obtain if we calculated them for a different state, such as the first excited state ${ }^{3} \mathrm{~T}_{2 \mathrm{~g}}$. (In eq $2, A, B$, and $C$ are the usual Racah parameters, ${ }^{5}$ while $U$ represents the kinetic energy and core potential.)
For a free metal ion it is true that the $t_{2 g}$ and $e_{g}$ orbitals are degenerate in the absence of any interelectronic repulsions among the d orbitals. This is because the inner shells are spherically symmetric. Hence, in crystal field theory, $10 D q$ may be defined as the difference in $t_{2 g}$ and $e_{g}$ orbital energies in the absence of any interelectronic repulsions among the d orbitals. Finally, in ligand field theory, that is, the molecular orbital version of crystal field theory, we may define $10 D q$ as the difference in $t_{2 g}$ and $e_{g}$ orbital energies (for $t_{2 g}$ and $e_{g}$ orbitals largely localized on the metal) in the absence of interelectronic repulsions among these same molecular orbitals. Thus

$$
\begin{align*}
& 10 D q=\epsilon_{\mathrm{t}}-\epsilon_{\mathrm{e}}-\sum_{\mathrm{d}}\left(J_{\mathrm{td}}{ }^{\prime}-K_{\mathrm{td}}{ }^{\prime}\right)+ \\
& \sum_{\mathrm{d}}\left(J_{\mathrm{ed}}{ }^{\prime}-K_{\mathrm{ed}^{\prime}}\right) \equiv \epsilon_{\mathrm{t}}^{0}-\epsilon_{\mathrm{e}}^{0} \tag{3}
\end{align*}
$$

where $\epsilon_{\mathrm{t}}$ and $\epsilon_{\mathrm{e}}$ are defined as in eq 1 . The sums extend over singly occupied spin orbitals of maximum d orbital character.

Part of the difficulty which arises in producing a satisfactory definition of $10 D q$ has its origin in the fact that such a definition invariably involves an open-shell system. The definition of orbital energy given in eq 1 is really satisfactory only for closed-shell systems, and definitions of orbital energy for open-shell systems are usually formulated in such a way as to preserve the degeneracy of a set of orbitals belonging to the same irreducible representation. Such definitions are considered in a following section of the present paper.

## Comparisons among Calculational Frameworks

The most straightforward way of calculating $10 D q$ is to calculate the total energy of two suitable states, such as the ${ }^{3} \mathrm{~A}_{2 \mathrm{~g}}$ and ${ }^{3} \mathrm{~T}_{2 \mathrm{~g}}$ states of the $\mathrm{d}^{3}$ system. There is no

[^0]possible theoretical objection to this method, since, as noted, it is completely rigorous and does not require one to use the molecular orbital method. Thus, Simanek and Stroubek ${ }^{6}$ have obtained $10 D q$ by this method for $\mathrm{MnF}_{6}{ }^{4-}$ using a function constructed from a superposition of several configurations, and de Laat ${ }^{7}$ has treated $\mathrm{TiF}_{6}{ }^{3-}$ via an unrestricted Hartree-Fock calculation on the ground and excited states. However, there are two disadvantages to this scheme. First, it cannot be used with approximate methods in which total energies are not obtainable. Secondly, the scheme suffers in not being based on orbitals, since it is an orbital picture which is in turn most completely compatible with ligand field theory itself.

Within molecular orbital theory there are several other possible points of view on the proper method of calculating $10 D q$ in addition to that expressed at the beginning of this paper. We consider first the point of view of Watson and Freeman. ${ }^{2}$ They begin by considering the mixing of the d orbitals with the symmetry orbitals of the ligands. For example, the bonding $\mathrm{t}_{2 \mathrm{~g}}$ orbitals, largely localized on the ligands, can be written as

$$
\begin{equation*}
\psi_{\mathrm{t}}^{\mathrm{b}}=N_{\mathrm{t}}\left(\chi_{\mathrm{t}}+\gamma_{\mathrm{t}} \varphi_{\mathrm{t}}\right) \tag{4}
\end{equation*}
$$

where $\chi_{t}$ is itself a linear combination of ligand $2 p_{\pi}$ atomic orbitals (see ref 1 for details). In addition, $\varphi_{t}$ is a d orbital of $\mathrm{t}_{2 \mathrm{~g}}$ symmetry, $N_{\mathrm{t}}$ a normalizing factor, and $\gamma_{\mathrm{t}}$ a small number known as the covalency parameter. In the crystal-field limit, $\gamma_{t}=0$. Similarly, the antibonding $\mathrm{t}_{2 \mathrm{~g}}$ orbitals of fundamental interest may be written as

$$
\begin{equation*}
\psi_{\mathrm{t}}^{\mathrm{a}}=N_{\mathrm{t}}^{\prime}\left(\varphi_{\mathrm{t}}-\lambda_{\mathrm{t}} \chi_{\mathrm{t}}\right) \tag{5}
\end{equation*}
$$

Since $\psi_{\mathrm{t}}{ }^{\mathrm{a}}$ and $\psi_{\mathrm{t}}{ }^{\mathrm{b}}$ are orthogonal, ${ }^{7} \gamma$ and $\lambda$ are not independent, and in fact

$$
\begin{align*}
\lambda & =\frac{\gamma+S}{1+\gamma S}  \tag{6}\\
S & =\left\langle\varphi_{\mathrm{t}} \mid \chi_{\mathrm{t}}\right\rangle
\end{align*}
$$

In a system in which $\psi_{t}{ }^{a}$ and $\psi_{t}{ }^{\text {b }}$ are both occupied, the total energy of the system no longer depends on $\gamma$ (or $\lambda$ ). This is because the mixing of filled shells is irrelevant to any physical property. Since the orbital energies of $\psi_{t}{ }^{a}$ and $\psi_{t}{ }^{\text {b }}$ depend on $\gamma$, they can have any values although their values are related to each other. Watson and Freeman therefore calculate a value of $\gamma$ appropriate to an orbital $\psi_{t}{ }^{\text {b }}$ whose antibonding counterpart $\psi_{\mathrm{t}}{ }^{\mathrm{a}}$ is empty. In this way the formalism of the restricted Hartree-Fock method is preserved, and all orbitals $\psi_{t}{ }^{\text {b }}$ have the same value of $\gamma$. Since this choice of $\gamma$ determines $\lambda$, it determines the orbital energy of $\psi_{\mathrm{t}}{ }^{2}$, and thus the value of 10 Dq . The values thus calculated are in poor agreement with experiment. Furthermore, $10 D q$ is obtained as a difference in the orbital energy of unoccupied orbitals, a somewhat peculiar point of view physically speaking.
The argument of Watson and Freeman does not apply if additional orbitals are added to the basis set. Thus, once $3 p_{\pi}$ ligand orbitals or metal $4 d$ are added, such that

$$
\begin{equation*}
\psi_{t}^{a}=N_{t}^{\prime}\left(\varphi_{t}-\lambda \chi_{\mathbf{t}}-\lambda^{\prime} \chi_{\mathbf{t}}^{\prime}+k \varphi_{\mathrm{t}}^{\prime}\right) \tag{7}
\end{equation*}
$$

then $\lambda$ is no longer completely determined by $\gamma$, pro-
(6) E. Simanek and Z. Stroubek, Phys. Stalus Solidi, 4, 251 (1964).
(7) F. L. M. A. H. de Laat, Thesis, Eindhoven, 1968.
vided of course that the number of electrons in the orbitals is not increased along with the size of the basis. The approach of Watson and Freeman is thus unsatisfactory if the basis set is enlarged. An additional argument to be brought against the scheme of Watson and Freeman is that, in practice, orbital energies do not much depend on the size of the basis. Thus, although the orbitals they employ may satisfy the requirements of restricted Hartree-Fock theory, they probably do not correspond to the orbital energies to be found using a larger basis, nor would their method retain its rigor in such a basis.

Another different point of view is that of the conventional molecular orbital theory for closed shells. Technically, this scheme can be applied only to the configuration $\mathrm{t}_{2 g}{ }^{6}$, but a heuristic extension to open shells is not difficult. Consider the $t_{2 g}{ }^{6}$ case. The total energy of the ground state ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ is

$$
\begin{gather*}
E\left({ }^{1} \mathrm{~A}_{1 \mathrm{~g}}\right)=2 \sum_{i} H_{i}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right)=\sum_{i}\left(H_{i}+\epsilon_{i}\right) \\
\epsilon_{i}=H_{i}+\sum_{j}\left(2 J_{i j}-K_{i j}\right) \tag{8}
\end{gather*}
$$

Here the sums extend over doubly occupied spatial orbitals; $K_{i i}=J_{i i}$. The energy of the excited state ${ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$, produced by exciting an electron from the $\mathrm{d}_{x y}$-type molecular orbital to the $\mathrm{d}_{\mathrm{z}^{2}}$, is ${ }^{8}$

$$
\begin{align*}
E\left({ }^{1} \mathrm{~T}_{2 \mathrm{~g}}\right)=E\left({ }^{1} \mathrm{~A}_{1 \mathrm{~g}}\right)+ & H(\theta)-H(\zeta)+\sum_{i}\left(2 J_{i \theta}-K_{i \theta}\right)- \\
& \sum_{i}\left(2 J_{i \zeta}-K_{i \zeta}\right)-J_{i \theta}+2 K_{i \theta} \tag{9}
\end{align*}
$$

Therefore

$$
\begin{equation*}
E\left({ }^{1} \mathrm{~T}_{2 \mathrm{~g}}\right)-E\left({ }^{1} \mathrm{~A}_{1 g}\right)=\epsilon_{\theta}-\epsilon_{\zeta}-J_{\zeta^{\theta}}+2 K_{5 \theta} \tag{10}
\end{equation*}
$$

All orbital energies and related integrals are calculated with the operators and wave functions appropriate to the ground state.

Unfortunately, the states ${ }^{1} \mathrm{~T}_{2 \mathrm{~g}}$ and ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$ do not differ merely by $10 D q$. In fact, even in the absence of a ligand field

$$
\begin{array}{r}
E^{0}\left({ }^{1} \mathrm{~T}_{2 \mathrm{~g}}\right)-E^{0}\left({ }^{1} \mathrm{~A}_{1 g}\right)=2 J_{\theta \xi}+2 J_{\theta \eta}+2 J_{\theta \xi}- \\
K_{\theta \xi}-K_{\theta \eta}-K_{\theta \xi}-2 J_{\zeta \xi}-2 J_{\zeta \eta}- \\
J_{\zeta \zeta}+K_{\zeta \xi}+K_{\zeta \eta} \tag{11}
\end{array}
$$

Since the energy difference in the presence of a ligand field is greater than the energy difference in the absence of a ligand field by $10 D q$, we obtain

$$
\begin{array}{r}
10 D q=\epsilon_{\theta}-\epsilon_{\zeta}-2 J_{\theta \xi}-2 J_{\theta \eta}-2 J_{\theta \xi}+2 J_{\zeta \xi}+ \\
2 J_{\zeta \eta}+2 J_{\zeta \zeta}+K_{\theta \xi}+K_{\theta \eta}+K_{\theta \zeta}- \\
K_{\zeta \xi}-K_{\zeta \eta}-K_{\zeta \zeta} \tag{12}
\end{array}
$$

This expression, however, is identical with eq 3 . We have thus proved that the conventional molecular orbital method of calculating excited state energies, i.e., eq 10 , is essentially identical with the method developed at the beginning of the present paper. Since the latter method is readily generalized to any system with either closed or open shells, we can always follow the formalism of eq 3 .

There is one ambiguity inherent in the use of eq 3. It is possible to choose the orbitals $\varphi_{\mathrm{t}}$ and $\varphi_{\mathrm{e}}$ in many

[^1]ways: in the selected component of the ground state they may both be filled, both empty, or one filled and one empty. It is easy to show that these choices will give rise to different values of $10 D q$ unless all orbitals have the same value of $\gamma$. Since this condition is not always satisfied when dealing with open shells, the ambiguity remains. The solution is to always take a flled orbital for $\varphi_{t}$ but an empty orbital for $\varphi_{e}$. In this way the analogy with the $t_{2 g}{ }^{6}$ case is fully preserved.

Two additional points are worth noting. First, the calculation of Sugano and Shulman ${ }^{1}$ is incorrect, although their method at first may seem similar to eq 3 . Their error lies partially in using a filled orbital for $\varphi_{\mathrm{e}}$. They also left an electron out of their Hamiltonian. Secondly, the remarks of Watson and Freeman are correct insofar as they apply to the calculation of spin densities. Thus, a second defect of the calculation of Sugano and Shulman is that their spin densities are incorrectly obtained.

## Open-Shell, Average-of-Configuration Framework

The defiinitions given thus far lack physical appeal since $10 D q$ is not expressed simply as a difference of orbital energies and since orbitals belonging to a given irreducible representation are not necessarily degenerate. These difficulties are avoided in the Roothaan ${ }^{9}$ open-shell method, which guarantees that the Fock operator belongs to the totally symmetric representation of the applicable symmetry group, here octahedral. Roothaan-Fock operators can be defined for each state, although in fact the simple Roothaan formalism cannot be applied to all states of $\mathrm{d}^{n}$ systems. (A more complicated formalism ${ }^{10}$ can be used, however.) For the sake of simplicity, and in order to bring out the explicit relationships among $10 D q$ values for systems with differing numbers of $d$ electrons, we will use the operator appropriate to no particular state, but valid instead for the average state ${ }^{11}$ of a configuration. Even this choice of state is not unambiguous, since in ligand-field theory we deal with more than one configuration, $\mathrm{t}_{2 \mathrm{~g}}{ }^{p} \mathrm{e}_{\mathrm{g}}{ }^{q}$ and $\mathrm{t}_{2 \mathrm{~g}}{ }^{p-1} \mathrm{e}_{\mathrm{g}}{ }^{q+1}$, for example. We therefore take the operator appropriate to the average state of the entire $\mathrm{d}^{n}$ configuration. This is fully in the spirit of ligand-field theory, which ordinarily recognizes but a single value of $10 D q$ for all possible states. In the same way, the aver-age-of-configuration Roothaan formalism recognizes a single $10 D q$ and a single set of molecular orbitals for all possible ligand-field states.

In the language of the original paper by Roothaan, the fractional occupancy of the $d$ shell is

$$
\begin{equation*}
f=n / 10 \tag{13}
\end{equation*}
$$

Furthermore, for the average-of-configuration, the constants $a$ and $b$ are given as

$$
\begin{equation*}
a=b=10(n-1) / 9 n \tag{14}
\end{equation*}
$$

Values of $\alpha$ and $\beta$ are readily derived since

$$
\begin{equation*}
\alpha=\beta=(1-a) /(1-f)=10 / 9 n \tag{15}
\end{equation*}
$$

The open-shell Fock operator may therefore be written
(9) C. C. J. Roothaan, Rev. Mod. Phys., 32, 179 (1960).
(10) C. C. J. Roothaan and P. S. Bagus in "Methods in Computational Physics," Vol. IV, B. Alder, Ed., Academic Press, New York, N. Y., 1963, p 47 ff.
(11) J. C. Slater, "Quantum Theory of Atomic Structure," Vol. II, McGraw-Hill Book Co., Inc., New York, N. Y., 1960, p 27.
in the form

$$
\begin{align*}
& \mathfrak{F}_{\mathrm{O}}=\mathbf{H}+\sum_{i}\left(2 \mathbf{J}_{i}-\mathbf{K}_{i}\right)+\frac{(n-1)}{9} \times \\
& \sum_{\mathrm{d}}\left(2 \mathbf{J}_{\mathrm{d}}-\mathbf{K}_{\mathrm{d}}\right)+2 \alpha \mathbf{L}_{\mathrm{C}}-\beta \mathbf{M}_{\mathrm{C}} \tag{16}
\end{align*}
$$

The sum over $i$ extends over all closed shells, while the sum over $d$ extends over all antibonding molecular orbitals of predominant d character, regardless of occupancy. $\mathbf{H}, \mathbf{J}$, and $\mathbf{K}$ are one-electron, Coulomb, and exchange operators, respectively, while LC and MC are are the Roothaan coulomb and exchange coupling operators. The Fock operator appropriate to the closed shells, although not used in the present paper, is

$$
\begin{array}{r}
\mathcal{F}_{\mathrm{C}}=\mathbf{H}+\sum_{i}\left(2 \mathbf{J}_{i}-\mathbf{K}_{i}\right)+f \sum_{\mathrm{d}}\left(2 \mathbf{J}_{\mathrm{d}}-\mathbf{K}_{\mathrm{d}}\right)+ \\
2 \alpha \mathbf{L}_{\mathrm{O}}-\beta \mathbf{M}_{\mathrm{O}} \tag{17}
\end{array}
$$

The two Fock operators satisfy eigenvalue equations of the form

$$
\begin{align*}
\mathscr{F}_{\mathrm{C}} \psi_{i} & =\epsilon_{i} \psi_{i} \\
\mathcal{F}_{\mathrm{O}} \psi_{\mathrm{d}} & =\epsilon_{\mathrm{d}} \psi_{\mathrm{d}} \tag{18}
\end{align*}
$$

where $\psi_{i}$ and $\psi_{\mathrm{d}}$ are closed-shell and open-shell molecular orbitals, respectively. Furthermore, the total av-erage-of-configuration energy is given as

$$
\begin{equation*}
E=\sum_{i}\left(H_{i}+\epsilon_{i}\right)+f \sum_{\mathrm{d}}\left(H_{\mathrm{d}}+\epsilon_{\mathrm{d}}\right) \tag{19}
\end{equation*}
$$

All the sums over $d$ can be further broken down into sums over $\mathrm{t}_{2 \mathrm{~g}}$ and $\mathrm{e}_{\mathrm{g}}$ orbitals, and, for example, the total energy can be written in the form

$$
\begin{align*}
& \bar{E}=\sum_{i}\left(H_{i}+\epsilon_{i}\right)+f \sum_{\mathfrak{t}}\left(H_{\mathbf{t}}+\epsilon_{\mathfrak{t}}\right)+ \\
& f \sum_{\mathrm{e}}\left(H_{\mathrm{e}}+\epsilon_{\mathrm{e}}\right) \tag{20}
\end{align*}
$$

By symmetry, all $\mathrm{t}_{2 \mathrm{~g}}$ and $\mathrm{e}_{\mathrm{g}}$ orbitals have the same energy, so

$$
\begin{equation*}
\bar{E}=\sum_{i}\left(H_{i}+\epsilon_{i}\right)+3 f\left(H_{\mathrm{t}}+\epsilon_{\mathrm{t}}\right)+2 f\left(H_{\mathrm{e}}+\epsilon_{\mathrm{e}}\right) \tag{21}
\end{equation*}
$$

It is easy to prove that $\epsilon_{\mathrm{t}}$ and $\epsilon_{\mathrm{e}}$ are equal for the free metal ion. Proving that $10 D q$ is their difference in a ligand field is more difficult. According to Roothaan ${ }^{9}$

$$
\begin{array}{r}
E=2 \sum_{i} H_{i}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right)+f\left[2 \sum_{\mathrm{d}} H_{\mathrm{d}}+\right. \\
f \sum_{\mathrm{d}} \sum_{\mathrm{d}^{\prime}}\left(2 a J_{\mathrm{dd}^{\prime}}-b K_{\mathrm{dd}}{ }^{\prime}\right)+ \\
\left.2 \sum_{i} \sum_{\mathrm{d}}\left(2 J_{i \mathrm{~d}}-K_{\mathrm{td}}\right)\right] \tag{22}
\end{array}
$$

The sums over $i$ and $j$ extend over doubly occupied closed-shell orbitals, while the sums over $d$ and $d^{\prime}$ extend over the open $t_{2 g}$ and $e_{g}$ shells. Consider the $d^{1}$ configuration, in which $a=b=0, f=1 / 10$. There are two ligand field states, and it is easy to show that their energies are

$$
\begin{gather*}
E\left({ }^{2} \mathrm{~T}_{2 \mathrm{~g}}\right)=2 \sum_{i} H_{i}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right)+ \\
H_{\mathrm{t}}+\sum_{i}\left(2 J_{i \mathrm{t}}-K_{\mathrm{tt}}\right) \\
E\left({ }^{2} \mathrm{E}_{8}\right)=2 \sum_{i} H_{i}+\sum_{i} \sum_{j}\left(2 J_{i j}-K_{i j}\right)+  \tag{23}\\
H_{\mathrm{e}}+\sum_{i}\left(2 J_{i \mathrm{e}}-K_{i \mathrm{e}}\right)
\end{gather*}
$$

Table I. Matrix Elements of the Self-Consistent Open-Shell Roothaan-Fock Operator $\mathfrak{F}_{0}$ for $\mathrm{NiF}_{6}{ }^{4-a}$

| $\mathrm{t}_{2 \mathrm{~g}}$ | $\chi_{\pi}$ | $\varphi_{\mathrm{d}}$ | $\mathrm{e}_{\mathrm{g}}$ | $\chi_{\mathrm{s}}$ | $\chi_{\mathrm{p}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0.124 | -0.044 | -0.785 | $\varphi_{\mathrm{d}}$ |  |  |
| -0.044 | 0.303 | 0.040 | -0.078 |  |  |
|  |  |  | -0.078 | -0.084 | -0.110 |

${ }^{a}$ All matrix elements and orbital energies in these tables are in atomic units.
methods of matrix element evaluation, such as those of Schreiner and Brown ${ }^{12}$ and of Caulton and Fenske. ${ }^{13}$

The zero-order "ionic Hamiltonian" matrix elements cannot be used as is, and corrections must be made for self-consistency. These are easily done using the techniques of the previous paper. ${ }^{4}$ Since there are no fully occupied or empty antibonding orbitals, one must calculate the population of each atomic orbital at every iterative stage and in this way obtain the corrections to the matrix elements of $\mathcal{F}_{\mathrm{O}}{ }^{0}$.

Table II. Orbital Coefficients and Energies Using the Open-Shell Roothaan-Fock operator $F_{0}$

|  | $\mathrm{e}_{\mathrm{g}}$ | $\chi_{\mathrm{s}}$ | $\chi_{\mathrm{p}}$ | $\varphi_{\mathrm{d}}$ | $\boldsymbol{\epsilon}$ | $\mathrm{t}_{2 \mathrm{~g}}$ | $\chi_{\pi}$ | $\varphi_{\mathrm{d}}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{NiF}_{6}{ }^{4}$ | 0.9989 | 0.0008 | 0.0132 | -0.785 | 0.9490 | 0.2542 | 0.110 |  |
|  | 0.0021 | 0.8586 | 0.4226 | 0.028 | -0.3238 | 0.9699 | 0.326 |  |
|  | -0.1132 | -0.5294 | 0.9180 | 0.359 |  |  |  |  |
| $\mathrm{CrF}_{6}{ }^{3-}$ | 0.9907 | 0.1140 | 0.0531 | -1.213 | 0.9369 | 0.2703 | -0.322 |  |
|  | -0.1273 | 0.8824 | 0.3366 | -0.450 | -0.3650 | 0.9682 | 0.316 |  |
| $\mathrm{FeF}_{6}{ }^{3-}$ | -0.1436 | -0.4870 | 0.9612 | 0.400 |  |  |  |  |
|  | 0.9926 | 0.1172 | 0.0524 | -1.154 | 0.9137 | 0.3402 | -0.270 |  |
|  | -0.1222 | 0.8626 | 0.3904 | -0.393 | -0.4141 | 0.9438 | 0.201 |  |

Table III. Matrix Elements of the Self-Consistent Closed-Shell" Formalism (Eq 3) for $\mathrm{NiF}_{6}{ }^{4-a}$

| $\mathrm{t}_{2 \mathrm{~g}}$ | $\chi_{\pi}$ | $\varphi_{\mathrm{d}}$ | $\mathrm{e}_{\mathrm{g}}$ | $\chi_{\mathrm{a}}$ | $\chi_{\mathrm{p}}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.193 | -0.030 | -0.662 | 0.040 | $\varphi_{\mathrm{d}}$ |  |
| -0.030 | 0.219 | 0.040 | 0.056 | -0.068 |  |
|  |  | -0.082 | -0.068 | 1.098 |  |

${ }^{a}$ Corrections to diagonal elements are not included.

Self-consistent Hamiltonian matrix elements in the open-shell formalism are reported in Table I for $\mathrm{NiF}_{6}{ }^{4-}$. (The overlap matrices have been given previously.) Resulting orbitals and orbital energies for $\mathrm{CrF}_{6}{ }^{3-}, \mathrm{FeF}_{6}{ }^{3-}$, and $\mathrm{NiF}_{6}{ }^{4-}$ are given in Table II. Similar data for the closed-shell formalism are reported in Table III and Table IV. Table V gives calculated values of $10 D q$.

Table IV. Orbital Coefficients and Energies Using the "Closed-Shell" Formalism of Eq 3

|  | $\mathrm{e}_{8}$ | $\chi^{8}$ | $\chi_{p}$ | $\varphi_{\mathrm{d}}$ | $\epsilon$ | $\mathrm{t}_{2 \mathrm{~g}}$ | $\chi_{\text {\% }}$ | $\varphi_{\mathrm{d}}$ | $\epsilon$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NiF}_{6}{ }^{\text {- }}$ |  | 0.9991 | -0.0080 | 0.0036 | -0.662 |  | 0.7795 | 0.5725 | 0.162 |
|  |  | 0.0472 | 0.9884 | 0.0954 | 0.049 |  | -0.6306 | 0.8231 | 0.257 |
|  |  | -0.1305 | -0.1830 | 1.0062 | 1.160 |  |  |  |  |
| $\mathrm{FeF}_{8}{ }^{3-}$ |  | 0.9966 | 0.0699 | 0.0397 | -0.996 |  | 0.1131 | 0.9846 | -0.458 |
|  |  | $-0.0465$ | 0.9527 | 0.1977 | -0.196 |  | 0.9968 | -0.1919 | -0.061 |
|  |  | $-0.1330$ | -0.3296 | 0.9930 | 0.824 |  |  |  |  |
|  |  | 0.9967 | 0.0617 | 0.0315 | -0.997 |  | 0.2340 | 0.9493 | -0.302 |
| $\mathrm{CrF}_{6}{ }^{3-}$ |  | -0.0502 | 0.9399 | $0.2205$ | $-0.203$ |  | 0.9773 | -0.3298 | -0.052 |
|  |  | $-0.1494$ | -0.3761 | 0.9952 | 0.694 |  |  |  |  |

If we choose the metal $d$ orbitals as solutions to the atomic average-of-configuration problem

$$
\begin{equation*}
\left(-1 / 2 \nabla^{2}+V_{M}\right)\left|\varphi_{d}\right\rangle=\epsilon_{d}\left|\varphi_{d}\right\rangle \tag{28}
\end{equation*}
$$

It is therefore easily proved that

$$
\begin{array}{r}
\left\langle\varphi_{\mathrm{d}}\right| \mathfrak{F}_{\mathrm{O}^{0}}\left|\varphi_{\mathrm{d}}\right\rangle=\epsilon_{\mathrm{d}}+\sum_{i=1}^{6}\left\langle\varphi_{\mathrm{d}}\right| V_{\mathbf{L}_{i}}\left|\varphi_{\mathrm{d}}\right\rangle \\
\left\langle\chi_{k}\right| \mathfrak{F}_{\mathrm{O}^{0}}\left|\chi_{k}\right\rangle=\epsilon_{k}+\sum_{i=2}^{6}\left\langle\varphi_{k 1}\right| V_{\mathbf{L}_{i}}\left|\varphi_{\mathbf{k}_{1}}\right\rangle+ \\
\left\langle\chi_{k}\right| V_{\mathrm{M}}\left|\chi_{k}\right\rangle \quad k=2 \mathrm{p} \text { or } 2 \mathrm{~s}  \tag{29}\\
\left\langle\chi_{k}\right| \mathfrak{F}_{\mathrm{O}^{0}}\left|\varphi_{\mathrm{d}}\right\rangle=S\left(\epsilon_{\mathrm{d}}+\epsilon_{k}\right)+\left\langle\left.\chi_{k}\right|^{1 / 2} \nabla^{2} \mid \varphi_{\mathrm{d}}\right\rangle+ \\
\sum_{i=2}^{6}\left\langle\varphi_{k 1}\right| V_{\mathbf{L} i}\left|\varphi_{\mathrm{d}}\right\rangle
\end{array}
$$

The third equation given is especially simple, since it involves only one-electron integrals plus an easily approximated ${ }^{4}$ three-center integral. Note that eq 29 is related to various semiempirical and/or approximate

## Discussion

By and large, the agreement between experimental and theoretically calculated values of $10 D q$ is gratifying. The one exception occurs in the "closed-shell"' calculation on $\mathrm{NiF}_{6}{ }^{4-}$, in which, due to heavy metal-ligand mixing, it is difficult to determine which $\mathrm{t}_{2 \mathrm{~g}}$ orbital is the one of greatest d character.

It is of interest to break down a typical open-shell calculation of $10 D q$ into its component stages. This is done in Figure 1 and in Table V. At the first level we can consider the difference between $\left\langle\varphi_{\mathrm{e}}\right| V_{L} \varphi_{\mathrm{e}}| \rangle$ and $\left\langle\varphi_{t}\right| V_{\mathrm{L}}\left|\varphi_{\mathrm{t}}\right\rangle_{\text {. }}$ This is the crystal-field value of $10 D q$, and, as noted in the literature, it is negative. At the second stage, we have the difference between the matrix elements $\left\langle\varphi_{\mathrm{e}}\right| \mathcal{F}_{\mathrm{o}}\left|\varphi_{\mathrm{e}}\right\rangle$ and $\left\langle\varphi_{\mathrm{t}}\right| \mathcal{F}_{\mathrm{o}}\left|\varphi_{\mathrm{t}}\right\rangle$. This difference is even more negative, due to the unequal influence of covalent donation of charge to the metal on $\varphi_{\mathrm{e}}$ and $\varphi_{\mathrm{t}}$. Finally, when mixing of metal and ligand orbitals is considered explicitly, the difference between $\left\langle\psi_{\mathrm{e}}{ }^{\mathrm{a}}\right| \mathfrak{F}_{\mathrm{o}}\left|\psi_{\mathrm{e}}{ }^{\text {a }}\right\rangle$ and
(12) A. F. Schreiner and T. L. Brown, J. Am. Chem. Soc., 90, 3366 (1968).
(13) K. G. Caulton and R. F. Fenske, Inorg. Chem., 7, 1273 (1968).

Table V. Comparison of Calculated and Experimental Values of $10 \mathrm{Dq}^{\alpha}$

|  |  | $\mathrm{NiF}_{6}{ }^{4-}$ | $\mathrm{FeF}_{6}{ }^{3-}$ | $\mathrm{CrF}_{6}{ }^{3-}$ |
| :--- | :--- | :---: | :---: | :---: |
| Closed- <br> shell | $10 D q$ | $0.083(18,300)$ | $0.0498(10,950)$ | $0.0578(12,700)$ |
| formalism |  |  |  |  |

${ }^{a}$ For simplicity, the sum in eq 3 has been evaluated using atomic orbitals. Values in parentheses in $\mathrm{cm}^{-1}$.
$\left\langle\psi_{\mathrm{t}}{ }^{2}\right| F_{0}\left|\psi_{\mathrm{t}}{ }^{\mathrm{a}}\right\rangle$ is correctly positive. It is to be noted that the usual semiempirical and/or approximate schemes do not take the first two effects into account.


Figure 1. Stages in the open-shell calculation of $10 D q$ for $\mathrm{NiF}_{6}{ }^{4-}$. Note that $10 D q$ is negative until the final stage of the calculation.

The information given for the closed-shell formalism is insufficient to obtain spin densities at the fluoride nuclei except in the case of $\mathrm{NiF}_{6}{ }^{4}$-. For this molecule the results are substantially the same as the (rather poor) results obtained in the WF formalism given in the previous paper. It appears, therefore, that the basis is insufficiently flexible to give good spin densities. On the other hand, it is easy to show that the data given in Table II (for the open-shell formalism) predict excessively large spin densities. However, it is not clear in the first place that spin densities, which are valid only
in the ground state, should be correctly calculated in the average-of-configuration formalism. Alternatively, the disagreement may depend on the neglect of the coupling operators. In any case, the WF formalism, which refers to a particular state of a particular configuration, is more rigorously applicable to the calculation of spin densities than any average-of-configuration ( $\mathrm{d}^{n}$ average) method. An improved and more rigorous formalism for spin densities would involve the average of a $\mathrm{t}_{2 \mathrm{~g}}{ }^{p} \mathrm{e}_{\mathrm{g}}{ }^{q}$ configuration, rather than the average of all possible states in the $\mathrm{d}^{n}$ system.

## Conclusions

One purpose of this paper has been to provide a framework for the calculation of $10 D q$ which is compatible with the conventional ligand-field picture. This has been done with the open-shell, average-of-configuration formalism. The quantity $10 D q$ is expressed as the simple difference of orbital energies, and the matrix elements involved show a close resemblance to certain approximate schemes. A second purpose has been to attempt to provide numerical techniques for estimating 10 Dq and determining the relative importance of different physical influences on its value. This second task has been approached from two independent viewpoints, closed-shell as well as open-shell Hartree-Fock theory. One may thus have some confidence that the present methods of calculation can be extended to other metalligand systems.

Acknowledgments. I am pleased to acknowledge many helpful discussions with my wife, Dr. Barbara H. Offenhartz. I am also grateful for partial support from the National Institutes of Health under Research Grant AM 12248. Portions of this work were carried out at the University of Colorado.


[^0]:    (5) J. S. Griffith, "The Theory of Transition Metal Ions," Cambridge University Press, Cambridge, England, 1961, p 83.

[^1]:    (8) We employ the usual abbreviations $\xi=y z, \eta=x z, \zeta=x y$, $\theta=z^{2}$, and $\epsilon=x^{2}-y^{2}$.

